چکیده :

Fe 3 O 4 –water nanofluid flow in a cavity with constant heat flux is investigated using a control volume based finite element method (CVFEM). Effects of Rayleigh and Hartmann numbers and volume fraction of Fe 3 O 4 (nano-magnetite, an iron oxide) on flow and heat transfer characteristics are analyzed. Results indicate that the temperature gradient is an increasing function of the buoyancy force and the volume fraction of Fe 3 O 4, but it is a de- creasing function of the Lorentz force. Also, the rate of heat transfer is augmented with an increase in the Lorentz force. However, the opposite is true on the rate of heat transfer with the buoyancy force. Furthermore, the core vortex moves downward with an increase in the Lorentz force. It is expected that the results presented here will not only provide useful information for cooling of electronic components but also complement the existing literature

کلید واژگان :

Nanofluid Variable magnetic field Heat flux Cooling of electronic components CVFEM



ارزش ریالی : 600000 ریال
دریافت مقاله
با پرداخت الکترونیک