قیمت نفت خام تحت تأثیر عوامل زیادی قرار دارد به طوری که معرفی رابطه ای که اکثر این عوامل را در بر داشته باشد، امری پیچیده و در عین حال ناکار آمد است. به همین دلیل پیش بینی از طریق مدل های ساختاری کار بسیار دشواری است و استفاده از سریهای زمانی روشی جایگزین است. در این روش ها رفتار گذشته نفت تجزیه و تحلیل میشود و از آن برای پیش بینی نوسانات آینده استفاده میشود. مطالعات زیادی برای پیش بینی قیمت نفت از روش هایی هم چون خود رگرسیون میانگین متحرک (ARIMA) و شبکه¬های عصبی (ANNS) استفاده کرده¬اند اما این مدل¬ها برای اینکه بتوانند پیش¬بینی دقیقی انجام دهند نیاز به تعداد داده های زیاد دارند که از محدودیت های این روش ها به شمار می رود. از آنجایی که مدل های پیش بینی فازی مدل هایی هستند که با تعداد داده¬های کم نیز پیش بینی دقیقی انجام می¬دهند در این تحقیق، با به کارگیری داده های روزانه، قیمت نفت اوپک (OPEC) از دو روش ARIMA و رگرسیون فازی(FR) بررسی شده است. هدف این مقاله ارزیابی و مقایسه عملکرد مدل ARIMA نسبت به مدل FR برای پیش بینی قیمت نفت اوپک است. با توجه به معیارهای خطای پیش بینی نتایج حاکی از این است که روش FR نسبت به روش ARIMA در پیش بینی قیمت نفت عملکرد بهتری دارد.
کلید واژگان :پیش بینی قیمت نفت، مدل ARIMA، مدل FR، اوپک.
ارزش ریالی : 500000 ریال
با پرداخت الکترونیک
جزئیات مقاله
- کد شناسه : 6143134262596922
- سال انتشار : 1391
- نوع مقاله : مقاله کامل پذیرفته شده در کنفرانس ها
- زبان : فارسی
- محل پذیرش : اولین همایش بین المللی اقتصاد سنجی روش ها و کاربردها
- برگزار کنندگان : دانشگاه آزاد اسلامی و احد سنندج
- تاریخ ثبت : 1394/02/21 15:40:25
- ثبت کننده : پویان کیانی
- تعداد بازدید : 342
- تعداد فروش : 0